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Abstract-This paper considers the influence of wall thermal conduction upon the interface temperature 
profile for the case of a thin heat dissipating wall cooled by forced laminar convection. A method for the 
rapid approximate calculation of both the temperature and the film coefficient is given, for the two cases 

of an almost isothermal wall and a wall of almost constant flux. 

NOMENCLATURE 

Biot number, equation (5a) ; 
film convection coefficient ; 
thermal conductivity; 
length of heated section of wall ; 
reference length ; 
quantity of heat ; 
Prandtl number ; 
Reynolds number ; 
temperature ; 
reference velocity ; 
coordinate ; 
modified coordinate ; 
constant ; 
dimensionless shear stress at the wall ; 
defined in equation (15) ; 
thickness of heated wall ; 

VL ; 
parameters ; 
dimensionless temperatures ; 
modified dimensionless wall tempera- 
ture ; 
density of fluid ; 
shear stress. 
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Superscripts 
* 3 refers to start of heating section ; 

9 signifies modified variable. 

Subscripts 

0, refers to x = 0; 

f , 

refers to dimensional variables ; 
refers to fluid ; 

s, refers to solid ; 
W, refers to wall. 

INTRODUCTION 

IN THE analysis of problems of heat convection 
from or to solid boundaries, both in internal 
and external flows, it is common to specify 
as a boundary condition at the solid confining 
surface a given temperature or flux distribution. 

In most cases arising in practice the tempera- 
ture and flux distributions actually obtained on 
the boundary are dependent upon the physical 
properties of the confining wall itself, and are 
seldom known a priori. It is therefore only under 
idealized conditions that such commonly speci- 
tied boundary conditions as an isothermal 
interface or a constant temperature gradient 
at the wall surface are ever achieved. 

That the problem has nevertheless received 
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scant attention is due to its complexity. Thus, 
for the comparatively simple case of the two- 
dimensional laminar flow of an incompressible, 
constant property Newtonian fluid over a con- 
stant property wall a complete treatment would 
involve the simultaneous solution of the bound- 
ary layer momentum and energy equations, as 
well as the diffusion equation with heat sources, 
for the wall. It is the purpose of the present 
paper to consider approximate solutions for 
this case, using the supplementary simplification 
that the wall is sufficiently thin in a direction 
normal to the interface, so that temperature 
variations in that direction may be neglected. 

It is intuitively obvious that a non-zero wall 
conductivity will have the effect of smoothing- 
out the temperature profile, causing a flux in the 
wall, in a surface parallel to the main flow, and 
in a direction opposed to the temperature 
gradient. In the extreme case of an infinitely 
conductive wall a constant temperature is 
created at the interface. Conversely, if there is 
no thermal conductivity in the wall, the interface 
flux will be specified by the local source strength 
in the wall. 

ANALYSIS 

Consider the equation of unidimensional 
heat conduction for a confining wall of thickness 
6 and heated length 1 containing distributed heat 
sources of strength &’ per unit volume and 
per unit time. It is assumed that 6 4 1. The 

configuration is illustrated in Fig. 1. Then, 

& [Kmdg] + G(T,x,) 

- Jy [T(x,) - T,(x,)] = 0 1 (1) 

(xf<x* <x:+1), 

q;(T) z 0 (Xl 6 x:, x1 > x: + 1). 1 
Here x1 is the (curvilinear) coordinate in the 
interface, x7 is the coordinate at the start of the 
heated surface, T(x,) is the wall temperature, 
T,(x,) is the temperature of the fluid outside 
the wall boundary layer, K,(T) is the thermal 
conductivity of the wall material and H(x,) is 
the film convection coefficient. In the following 
the wall material will be assumed to possess 
constant physical properties over the length 
of the heated section. The boundary conditions 
at the ends of the heated segment of the wall 
will depend upon the physical properties of the 
wall material. We have, 

T(x, -+ 0) = T, 7 

T(x, -+ ~0) = Tcnz (2) 

while at points x1 = x7 and x1 = x7 + I the 
following conditions obtain, 

KM - 0) Tx(x: + 0) = -- 
KM + 0) 

W; - 0) 
1 

K,(x: + 1 + 0) (3) 
T,(xr + I - 0) = 

K,(xT + 1 - 0) 

x T,(xr + 1 + 0). J 

In particular if the wall material outside the 
heated segment is of zero thermal conductivity, 
then from (3) 

T,(x: + 0) = 0 T,(xf + 1 - 0) = 0, (4) 

and equations (l), (4) will describe the behaviour 
of a heated strip. For convenience we shall now 
introduce dimensionless variables as follows : 

x = x,/L A = 1jL and 

%x1 = 

K,V - T,) 

q”’ L2 (5) 
w FIG. 1. 
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where L is some suitable reference length. The 
Biot modulus is defined as, 

H.L’ 
Bi = n (54 

LL, . 0 

Introducing these variables into equation (1) 
gives (for the particular case of constant K,, 
?,andqt) 

d29 
- - Bi8 + 1 = 0. 
dx2 

(6) 

THE CASE OF ALMOST CONSTANT 

WALL TEMPERATURE 

It is now necessary to derive a suitable 
expression for the dependence of Bi upon the 
other variables of the problem. We shall be 
concerned in practice most often with cases of a 
sectionally almost isothermal wall, or else an 
almost constant flux wall. For the first case 
Lighthill [l] has developed a suitable expression 
for the film coefficient 

x ii j)[B(o)l da) -’ NH+?. (7) 

Here K, is the thermal conductivity of the fluid ; 
/l(x) is the dimensionless shear-stress at the wall, 

p(x) = + Re”, 

where U is some reference velocity, 8, is the 
dimensionless excess wall temperature, and the 
integral in equation (7) is to be interpreted in the 
Stieltjes sense. This expression for the film 
coefficient may now be introduced into (5a) and 
into (6). We shall consider in more detail the 
case of a conducting strip of the wall, embedded 
in non-conducting material (Fig. 1). In this 
particular case it is useful to modify the co- 
ordinates as follows : 

(8) 

The parameter E is defined by 
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A -*. (9) 

Thereupon equation (6) now reads, 

E@XX - &j(X)] x d@(X*) s 
0 { f JMv)l w* 
+l=O (8% 1) (IO) 

with boundary conditions, 

@x(x*) = 0,(x* + 1) = 0. (11) 

For the case of an almost isothermal wall, the 
parameter E will have a very large numerical 
value. Hence it will be possible to solve equation 
(10) in a regular pertubation expansion in l/e for 
a variety of cases. As an example we solve here 
the simple case of constant b(X),. which is not 
directly applicable to the case of external “wedge 
flows”, especially if the heated surface is long. 
It is, however, applicable to the case of hydro- 
dynamically “fully developed” internal flows 
(with certain supplementary restrictions, to be 
discussed below). The expression for the tem- 
perature becomes, 

O(X) = $[fi(x)]-+ + ; 
I 
3. (X - x*y 

- f(X - x*J2 - & + $j(X),” . 1 
x (X - x*p _ (X -x*y 

1 g 
. 

[ 7 11 1 
- g_) (X - x*p + a 1 + o/&+1. (1-a 

The constant a is determined from the condition 
that the highest order term retained in the 
expansion (12) will fulfill the equation (10) in the 
mean. In the present case 

3361 
c1 = ~ = 0.01319. 

254800 

Once the temperature profile in the wall has 
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been determined, equation (7) will yield the film 
convection coefficient. It is seen that near the 
leading edge of the plate this coefficient will be 
markedly reduced by the effect of wall con- 
duction. 

The solution (12) will prove useful even in the 
case in which the shear stress at the wall depends 
upon X, provided the extent of the heated length 
of the wall is not too great. In this 
sufftcient to introduce an average 

P(X). E21, 

case it is 
value of 

(13) 

into equation (12) and an approximate value 
for O(X) will then be obtained. 

THE CASE OF SMALL WALL CONDUCTIVITY 

It is apparent that for vanishingly small E, a 
perturbation expansion baseduponequation( 10) 
would become singular. Moreover, in the limit 
of E + 0 a constant-flux interface would be 
obtained, so that it will be appropriate to 

ROTEM 

replace equation (7) by an expression suitable 
for that case [l], 

Kf H(X) = y r(i) . (3Pr)* . Re* 

with, 

Y(x) = j J[P(l,] di. (15) 
0 

The counterparts to equations (8) through (10) 
become, 

0 = g . k . r(s) . (3Pr)* Re* 9 (16) 
s 

6 = % E [r(s) Re* (3Pr)*] - l (17) 
f 

and, 

E@,, - * 
0 

j-* [Y(X) - Y(x*)]-+ dx 

+l=O. (c < 1). (18) 

FIG. 2. 
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The boundary conditions for equation (18) 
remain equations (11). 

As an example, we shall again solve the case 
of a constant j?(x). It is found convenient to 
replace 

6 = &?/A)+ 0, t = & 

and 
x - x* 

2=-j-- 

and then to solve numerically the resultant 
equations, 

i&a - 6 p+l=O (e< 1) (19) 

a, (0) = 62 (1) = 0. (20) 

Some results, computed with the aid of an 
Adams-Bashforth predictor corrector routine 
are shown in the graph, Fig. 2. There the vari- 
ation of @with 8 is given for several values of 
the parameter t. The intercepts of these curves 
on the _% = 0 axis are also indicated numerically. 

As already pointed out above, a perturbation 
expansion based upon equation (19) would 
become singular. Therefore the influence of the 
small but non-zero conduction effect is felt 
mainly in a narrow “boundary layer” near the 
leading edge of the heated strip. There the first 
and second terms of equation (19) must become 
of comparable order of magnitude even in the 
limit of E+ 0. We are therefore immediately 
able to predict that near the leading edge, 

&Xi+ (i, 8 small). (21) 

This prediction is compared in Table 1 with 

Table 1 

t^ 0.05 0.10 0.15 020 

(zo.lo)+ 0.8707 1aOOO 1.0844 1.1488 

&a 

&( P = 0.10) 
0.9029 1aOOO 1.0589 10987 

data computed from equation (19). The agree- 
ment is seen to be satisfactory. 

DISCUSSION 

Comparatively little has been reported in the 
relevant literature on the effect of wall thermal 
conduction upon interface temperature or flux 
distribution. Some recent work dealing with the 
subject is given in references [3] and [4]. In the 
present paper a simple approximate method for 
the evaluation of the wall conduction effect is 
described, and a particular example dealing with 
distributed heat sources of constant intensity is 
worked out in detail. The formulae given are 
suitable mainly for laminar boundary layers in 
external flows. They may, however, be extended 
to the case of turbulent flows with a laminar 
sublayer as well. In internal flows their usefulness 
is limited to the vicinity of the start of the heated 
part of the wall, as no account is taken in the 
present method of the variation in bulk tem- 
perature with x. 

The results of the case of a wall approaching 
the condition of constant flux at the interface 
are summarized in the graph Fig. 2. It will be 
noted that near the leading edge of the heated 
surface the effect of even a very small wall 
conduction is notable. For an actual practical 
case the following values were computed : 

Strip made of Constantan, heated electrically, 
embedded in insulating material and cooled 
by forced convection of oil over its free surface. 
6/L,,r = 0.0368, R,, = 91.5, ratio of the co- 
efficients of thermal conductivity 103.2, A = 

0.59. The value of i is 0.13. 

Equations (7) and (14) which were used in 
this work to evaluate the film coefficients, are 
essentially asymptotic solutions of the thermal 
boundary-layer equations for large values of the 
Prandtl number. It has been shown [l] that 
their usefulness extends down to Pr of about 07. 

Analogous expressions for the case of very 
low Prandtl number are also available. However, 
fluids of small Pr will in general possess a very 
high thermal conductivity so that the influence 
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of longitudinal temperature gradients in the University, and was supported from the Petroleum Research 

fluid (neglected in these derivations) may no Fund of the American Chemical Society. Appreciation to 

longer be ignored. Therefore the extension of 
Professor Acrivos and to the A.1.Ch.E. is expressed herewith. 

the method described here to those fluids is not 
warranted. 

The effects of the sharp discontinuity in wall I. 

temperature at the leading edge of the heated 
section of the wall are not limited to the wall 
itself. A more thorough investigation would have 
to take into account the axial conductivity in the 2. 
fluid over the leading edge as well [5] even for 
the case of values of Pr which are not small. No 
account is taken of that effect in the work 3, 
reported here. 
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R-On considere I’influence de la conduction thermique dans une paroi sur le profil de tempkrature 
B I’interface pour le cas d’une paroi mince aver dissipation de chaleur interne refroidie par convection for&e 
laminaire. On donne une mCthode pour calculer rapidement d’une fawn approchk la temptrature et le 
coefficient de film. dans les deux cas d’une paroi presque isotherme et d’une paroi avec un flux de chaleur 

presque uniforme. 

Zusammenfm-Es wird hier der Einfluss der Wirmeleitfihigkeit der Wand auf das Temperaturprofil 
der angrenzenden Schicht behandelt fiir den Fall einer diinnen Wand mit WLrmedissipation wobei die 
Kiihlung durch erzwungene laminare Konvektion erfolgt. Eine Methode zur schnellen. nlherungsweisen 
Berechnung sowohl des Temperatur- als such des Filmkoefflzienten ist angegeben fiir die beiden FLlle der 

nahezu isothermen Wand und des nahezu konstanten Wlrmeflusses. 

Ammaqm143 CTaTbe paCCMaTpHBaeTCH BJlUJiHEIe TeWlOIIpOBO~HOCTIl CTeHKA Ha paCllpel[e- 
neHHe rpaHKqbl paanena nnfi capan T0~~0l paccellsaroqetf Tenno cTeHKm npn BhIHy- 
mAeeHno~taMuHapHoiKoHseKqau. llanaraeTcrrnfeTo~6nc~poronpa6n~Htennoropac~eTaKaK 
TemepaTypq TaK II nneHOYHOrO KO8~$i~UeHTa TeIWIOO6MeHa AJIJI ABYX cny9aeB: IIO'ITU 

USOTepMUYeCKOfi CTeHKH Ei CTeHKIi C IIOYTK IlOCTORHHbIM TfXlJlOBblM IlOTOKOM. 


